Google soc

Author: f | 2025-04-24

★★★★☆ (4.7 / 2527 reviews)

closed captions extension

Google Cloud’s SOC 2 report provides assurance to investors and clients that Google Cloud infrastructure had controls in place to meet the SOC 2 criteria and those controls operated effectively over time. Leveraging the GCP SOC, many of our clients receive annual Type II SOC 2 reports where Google was responsible for providing SOC 2 compliant

jiggler for windows

SOC Secure - Apps on Google Play

Polymer-based gelators formed transparent and stable gels that do not transform into crystals. It is important to introduce a gelation-driving compound to highly miscible and flexible polymers such as polysiloxane, polyether and polycarbonate. Considering that polymer-based gelators are physiologically inert and safe, they are most likely useful as scaffolds for tissue engineering. In the future, by utilizing the transparency and safety of gels produced using polymer-based gelators, a variety of industrial applications are expected, such as cosmetics and an ink-thickener for an inkjet printer, among others. ReferencesTerech, P. & Weiss, R. G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133–3159 (1997).Article CAS Google Scholar van Esch, J. H. & Feringa, B. L. New functional materials based on self-assembling organogels: from serendipity towards design. Angew. Chem. Int. Ed. 39, 2263–2266 (2000).3.0.CO;2-V" data-track-item_id="10.1002/1521-3773(20000703)39:133.0.CO;2-V" data-track-value="article reference" data-track-action="article reference" href=" aria-label="Article reference 2" data-doi="10.1002/1521-3773(20000703)39:133.0.CO;2-V">Article CAS Google Scholar Estroff, L. A. & Hamilton, A. D. Water gelation by small organic molecules. Chem. Rev. 104, 1201–1217 (2004).Article CAS Google Scholar Suzuki, M. & Hanabusa, K. L-Lysine-based low-molecular-weight gelators. Chem. Soc. Rev. 38, 967–975 (2009).Article CAS Google Scholar Suzuki, M. & Hanabusa, K. Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem. Soc. Rev. 39, 455–463 (2010).Article CAS Google Scholar John, G., Shankar, B. V., Jadhav, S. R. & Vemula, P. K. Biorefinery: a design tool for molecular gelators. Langmuir 26, 17843–17851 (2010).Article CAS Google Scholar Svobodová, H., Noponen, V., Kolehmainen, E. & Sievänen, E. Recent advances in steroidal supramolecular gels. RSC Adv. 2, 4985–5007 (2012).Article Google Scholar Tam, A. Y.-Y. & Yam, V. W.-W. Recent advances in metallogels. Chem. Soc. Rev. 42, 1540–1567 (2013).Article CAS Google Scholar Raeburn, J., Cardoso, A. Z. & Adams, D. J. The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem. Soc. Rev. 42, 5143–5156 (2013).Article CAS Google Scholar Yu, G., Yan, X., Han, C. & Huang, F. Characterization of supramolecular gels. Chem. Soc. Rev. 42, 6697–6722 (2013).Article CAS Google Scholar Segarra-Maset, M. D., Nebot, V. J., Miravet, J. F. & Escuder, B. Control of molecular gelation by chemical stimuli. Chem. Soc. Rev. 42, 7086–7098 (2013).Article CAS Google Scholar Tachibana, T., Mori, T. & Hori, K. Chiral mesophases of 12-hydroxyoctadecanoic acid in jelly and in the solid state. I. a new type of lyotropic mesophase in jelly with organic solvents. Bull. Chem. Soc. Jpn 53, 1714–1719 (1980).Article CAS Google Scholar Yamamoto, S. Sorbitol derivatives. III. Organogel formation by benzylidenesorbitol. J. Chem. Soc. Jpn. Ind. Chem. Soc. 46, 779–781 (1943) Chem. Abstr. 46, 7047i (1952). Google Scholar Hanabusa, K., Hiratsuka, K. & Shirai, H. Easy preparation and useful character of organogel electrolytes based on

open source plex alternative

Google SoC - Net-SNMP Wiki

Lithium intercalation into lix MO y host materials (M = Ni, Mn). J Electrochem Soc 147:1322–1331. Article Google Scholar Tavassol H, Chan MKY, Catarello MG et al (2013) Surface coverage and SEI induced electrochemical surface stress changes during li deposition in a model system for li-ion battery anodes. J Electrochem Soc 160:A888–A896. Article Google Scholar Wang JW, He Y, Fan F et al (2013) Two-phase electrochemical Lithiation in amorphous silicon. Nano Lett 13:709–715. Article Google Scholar Paz-Garcia JM, Taiwo OO, Tudisco E et al (2016) 4D analysis of the microstructural evolution of Si-based electrodes during lithiation: time-lapse X-ray imaging and digital volume correlation. J Power Sour 320:196–203. Article Google Scholar Nation L, Li J, James C et al (2017) In situ stress measurements during electrochemical cycling of lithium-rich cathodes. J Power Sour 364:383–391. Article Google Scholar Sheth J, Karan NK, Abraham DP et al (2016) In situ stress evolution in li 1+xMn 2O 4Thin films during electrochemical cycling in li-ion cells. J Electrochem Soc 163:A2524–A2530. Article Google Scholar Cho H-M, Chen MV, MacRae AC, Meng YS (2015) Effect of surface modification on Nano-structured LiNi0.5Mn1.5O4 spinel materials. ACS Appl Mater Interfaces 7:16231–16239. Article Google Scholar Ho C (1980) Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. J Electrochem Soc 127:343–350. Article Google Scholar Xie J, Kohno K, Matsumura T et al (2008) Li-ion diffusion kinetics in LiMn2O4 thin films prepared by pulsed laser deposition. Electrochim Acta 54:376–381. Article Google Scholar Goonetilleke PC, Zheng JP, Roy D (2009) Effects of surface-film formation on the electrochemical characteristics of LiMn2O4 cathodes of lithium ion batteries. J Electrochem Soc 156:A709–A719. Article Google Scholar Zheng J, Sulyma C, Goia C et al (2012) Electrochemical features of ball-milled lithium manganate spinel for rapid-charge cathodes of lithium ion batteries. J Solid

Google SOC Analyst I Salaries

R. Araujo, M. Galiazzo, O. Winter, R. Sfair, The journey of typhon-echidna as a binary system through the planetary region. Mon. Not. R. Astron. Soc. 476(4), 5323–5331 (2018)Article ADS Google Scholar W. Bottke, D. Vokrouhlickỳ, D.P. Rubincam, M. Broz, The effect of yarkovsky thermal forces on the dynamical evolution of asteroids and meteoroids. Asteroids III 395, 408 (2002) Google Scholar W.F. Bottke, D.P. Rubincam, J.A. Burns, Dynamical evolution of main belt meteoroids: numerical simulations incorporating planetary perturbations and yarkovsky thermal forces. Icarus 145(2), 301–331 (2000)Article ADS Google Scholar W.F. Bottke Jr., A. Morbidelli, R. Jedicke, J.-M. Petit, H.F. Levison, P. Michel, T.S. Metcalfe, Debiased orbital and absolute magnitude distribution of the near-earth objects. Icarus 156(2), 399–433 (2002)Article ADS Google Scholar J.E. Chambers, A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304(4), 793–799 (1999)Article ADS Google Scholar C.D. de la Fuente Marcos, R. De la Fuente Marcos, Far from random: dynamical groupings among the neo population. Mon. Not. R. Astron. Soc. 456(3), 2946–2956 (2016)Article ADS Google Scholar S.F. Dermott, C.D. Murray, Nature of the kirkwood gaps in the asteroid belt. Nature 301(5897), 201–205 (1983)Article ADS Google Scholar S.F. Dermott, D. Li, A.A. Christou, T.J.J. Kehoe, C.D. Murray, J.M. Robinson, Dynamical evolution of the inner asteroid belt. Mon. Not. R. Astron. Soc. 505(2), 1917–1939 (2021). ADS Google Scholar R.P. Di Sisto, N.L. Rossignoli, Centaur and giant planet crossing populations: origin and distribution. Celest. Mech. Dyn. Astron. 132(6–7), 36 (2020)MathSciNet ADS Google Scholar R.P. Di. Google Cloud’s SOC 2 report provides assurance to investors and clients that Google Cloud infrastructure had controls in place to meet the SOC 2 criteria and those controls operated effectively over time. Leveraging the GCP SOC, many of our clients receive annual Type II SOC 2 reports where Google was responsible for providing SOC 2 compliant

Google SOC Analyst Salaries - Glassdoor

Fritts, C. Brunini, Astrophys. J. 809(1), 36 (2015). Pokorný, P.G. Brown, Astron. Astrophys. 592, A150 (2016). ADS Google Scholar R.C. Blaauw, M.D. Campbell-Brown, R.J. Weryk, Mon. Not. R. Astron. Soc. 414(4), 3322 (2011). ADS Google Scholar E. Grun, H.A. Zook, H. Fechtig, R.H. Giese, Icarus 62(2), 244 (1985). ADS Google Scholar V. Porubčan, L. Kornoš, I.P. Williams, Contributions Astron. Obs. Skalnate Pleso 36, 103 (2006)ADS Google Scholar D.J. Asher, S.V.M. Clube, D.I. Steel, Mon. Not. R. Astron. Soc. 264, 93 (1993). ADS Google Scholar P. Spurný, J. Borovička, H. Mucke, J. Svoreň, Astron. Astrophys. 605, A68 (2017). ADS Google Scholar P. Jenniskens, J. Vaubaillon, Astron. J. 139, 1822 (2010). ADS Google Scholar T.J. Jopek, Z. Kaňuchová, Planet. Space Sci. 143, 3 (2017). ADS Google Scholar I.P. Williams, T.J. Jopek, R. Rudawska, J. Tóth, L. Kornoš, Minor Meteor Showers and the Sporadic Background (Cambridge University Press, Cambridge, 2019), p. 210 Google Scholar R.B. Southworth, G.S. Hawkins, Smithsonian Contributions Astrophy. 7, 261 (1963)ADS Google Scholar J.D. Drummond, Icarus 45(3), 545 (1981). ADS Google Scholar G.B. Valsecchi, T.J. Jopek, C. Froeschle, Mon. Not. R. Astron. Soc. 304(4), 743 (1999). ADS Google Scholar T.J. Jopek, R. Rudawska, P. Bartczak, Earth Moon Planets 102(1–4), 73 (2008). ADS Google Scholar A.V. Moorhead, Mon. Not. R. Astron. Soc. 455(4), 4329 (2016). ADS Google Scholar L. Neslušan, M. Hajduková, Astron. Astrophys. 598, A40 (2017). ADS Google Scholar R. Rudawska, P. Matlovič, J. Tóth, L. Kornoš, Planet. Space Sci. 118, 38 (2015). ADS Google Scholar P. Brown, R.J. Weryk, D.K. Wong, J. Jones, Icarus 195(1), 317 (2008). ADS Google Scholar J. Vaubaillon, F. Colas, L. Jorda, Astron. Astrophys. 439(2), 761 (2005). ADS Google Scholar G.O. Ryabova, Solar Syst. Res. 47(3), 219 (2013). ADS Google Scholar D.P. Galligan, W.J. Baggaley, Mon. Not. R. Astron. Soc. 359(2), 551 (2005). ADS Google Scholar A. Bischoff, J.A. Barrat, K. Bauer, C. Burkhardt, H. Busemann, S. Ebert, M. Gonsior, J. Hakenmüller, J. Haloda, D. Harries, Meteorit. Planet. Sci. 52(8), 1683 (2017). ADS Google Scholar J. Jones, P. Brown, Mon. Not. R. Astron. Soc. 265, 524 (1993). ADS Google Scholar D. Nesvorný, P. Jenniskens, H.F. Levison, W.F. Bottke, D. Vokrouhlický, M. Gounelle, Astrophys. J. 713(2), 816 (2010). ADS Google Scholar P. Pokorný, D. Vokrouhlický, D. Nesvorný, M. Campbell-Brown, P. Brown, Astrophys. J. 789(1), 25 (2014). ADS Google Scholar M.D. Campbell-Brown, Icarus 196(1), 144 (2008). ADS Google Scholar N. McBride, J.A.M. McDonnell, Planet. Space Sci. 47(8–9), 1005 (1999). ADS Google Scholar A.V. Moorhead, P.G. Brown, M.D. Campbell-Brown, D. Heynen, W.J. Cooke, Planet. Space Sci. 143, 209 (2017). ADS Google Scholar E. Grun, H.A. Zook, M. Baguhl, A. Balogh, S.J. Bame, H. Fechtig, R. Forsyth, M.S. Hanner, M. Horanyi, J. Kissel, Nature 362(6419), 428 (1993). ADS Google

SoC-L - Apps on Google Play

Formation histories of disc galaxies. Mon. Not. R. Astron. Soc. 2019, 483, 1496–1512. [Google Scholar] [CrossRef]McGaugh, S.S.; Bothun, G.D.; Schombert, J.M. Galaxy Selection and the Surface Brightness Distribution. Astron. J. 1995, 110, 573. [Google Scholar] [CrossRef]Akritas, M.G.; Bershady, M.A. Linear Regression for Astronomical Data with Measurement Errors and Intrinsic Scatter. Astrophys. J. 1996, 470, 706. [Google Scholar] [CrossRef] [Green Version]Begum, A.; Chengalur, J.N.; Karachentsev, I.D.; Sharina, M.E. Baryonic Tully-Fisher relation for extremely low mass Galaxies. Mon. Not. R. Astron. Soc. 2008, 386, 138–144. [Google Scholar] [CrossRef] [Green Version]McGaugh, S.S.; Schombert, J.M. Weighing Galaxy Disks with the Baryonic Tully-Fisher Relation. Astrophys. J. 2015, 802, 18. [Google Scholar] [CrossRef] [Green Version]Aaronson, M.; Huchra, J.; Mould, J. The infrared luminosity/H I velocity-width relation and its application to the distance scale. Astrophys. J. 1979, 229, 1–13. [Google Scholar] [CrossRef]McGaugh, S.S.; Wolf, J. Local Group Dwarf Spheroidals: Correlated Deviations from the Baryonic Tully-Fisher Relation. Astrophys. J. 2010, 722, 248–261. [Google Scholar] [CrossRef]Mo, H.J.; Mao, S.; White, S.D.M. The formation of galactic discs. Mon. Not. R. Astron. Soc. 1998, 295, 319–336. [Google Scholar] [CrossRef] [Green Version]Bullock, J.S.; Kolatt, T.S.; Sigad, Y.; Somerville, R.S.; Kravtsov, A.V.; Klypin, A.A.; Primack, J.R.; Dekel, A. Profiles of dark haloes: Evolution, scatter and environment. Mon. Not. R. Astron. Soc. 2001, 321, 559–575. [Google Scholar] [CrossRef] [Green Version]Gnedin, O.Y.; Weinberg, D.H.; Pizagno, J.; Prada, F.; Rix, H. Dark Matter Halos of Disk Galaxies: Constraints from the Tully-Fisher Relation. Astrophys. J. 2007, 671, 1115–1134. [Google Scholar] [CrossRef] [Green Version]Trujillo-Gomez, S.; Klypin, A.; Primack,

google-soc GitHub Topics GitHub

Missing mass problem signal the breakdown of Newtonian gravity? Astrophys. J. 1984, 286, 7–14. [Google Scholar] [CrossRef]Milgrom, M. Dynamics with a Nonstandard Inertia-Acceleration Relation: An Alternative to Dark Matter in Galactic Systems. Ann. Phys. 1994, 229, 384–415. [Google Scholar] [CrossRef] [Green Version]Milgrom, M. The modified dynamics as a vacuum effect. Phys. Lett. A 1999, 253, 273–279. [Google Scholar] [CrossRef] [Green Version]Milgrom, M. MOND laws of galactic dynamics. Mon. Not. R. Astron. Soc. 2014, 437, 2531–2541. [Google Scholar] [CrossRef] [Green Version]Das, M.; McGaugh, S.S.; Ianjamasimanana, R.; Schombert, J.; Dwarakanath, K.S. Tracing the Dynamical Mass in Galaxy Disks Using H i Velocity Dispersion and Its Implications for the Dark Matter Distribution in Galaxies. Astrophys. J. 2020, 889, 10. [Google Scholar] [CrossRef] [Green Version]Sanders, R.H. Clusters of galaxies with modified Newtonian dynamics. Mon. Not. R. Astron. Soc. 2003, 342, 901–908. [Google Scholar] [CrossRef] [Green Version]Sanders, R.H. Neutrinos as cluster dark matter. Mon. Not. R. Astron. Soc. 2007, 380, 331–338. [Google Scholar] [CrossRef] [Green Version]Angus, G.W.; Famaey, B.; Buote, D.A. X-ray group and cluster mass profiles in MOND: Unexplained mass on the group scale. Mon. Not. R. Astron. Soc. 2008, 387, 1470–1480. [Google Scholar] [CrossRef] [Green Version]Tian, Y.; Umetsu, K.; Ko, C.M.; Donahue, M.; Chiu, I.N. The Radial Acceleration Relation in CLASH Galaxy Clusters. arXiv 2020, arXiv:2001.08340. [Google Scholar]McGaugh, S.S. The Imprint of Spiral Arms on the Galactic Rotation Curve. Astrophys. J. 2019, 885, 87. [Google Scholar] [CrossRef]McGaugh, S.S. The Surface Density Profile of the Galactic Disk from the Terminal Velocity Curve. Astrophys. J.. Google Cloud’s SOC 2 report provides assurance to investors and clients that Google Cloud infrastructure had controls in place to meet the SOC 2 criteria and those controls operated effectively over time. Leveraging the GCP SOC, many of our clients receive annual Type II SOC 2 reports where Google was responsible for providing SOC 2 compliant The American Institute of Certified Public Accountants (AICPA) SOC 2 (Service Organization Controls) and SOC 3 audit framework defines Trust Services Criteria for security, availability, processing integrity, privacy and confidentiality. Google has both SOC 2 and SOC 3 reports for Google Cloud Platform and Google Workspace.

Comments

User8111

Polymer-based gelators formed transparent and stable gels that do not transform into crystals. It is important to introduce a gelation-driving compound to highly miscible and flexible polymers such as polysiloxane, polyether and polycarbonate. Considering that polymer-based gelators are physiologically inert and safe, they are most likely useful as scaffolds for tissue engineering. In the future, by utilizing the transparency and safety of gels produced using polymer-based gelators, a variety of industrial applications are expected, such as cosmetics and an ink-thickener for an inkjet printer, among others. ReferencesTerech, P. & Weiss, R. G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133–3159 (1997).Article CAS Google Scholar van Esch, J. H. & Feringa, B. L. New functional materials based on self-assembling organogels: from serendipity towards design. Angew. Chem. Int. Ed. 39, 2263–2266 (2000).3.0.CO;2-V" data-track-item_id="10.1002/1521-3773(20000703)39:133.0.CO;2-V" data-track-value="article reference" data-track-action="article reference" href=" aria-label="Article reference 2" data-doi="10.1002/1521-3773(20000703)39:133.0.CO;2-V">Article CAS Google Scholar Estroff, L. A. & Hamilton, A. D. Water gelation by small organic molecules. Chem. Rev. 104, 1201–1217 (2004).Article CAS Google Scholar Suzuki, M. & Hanabusa, K. L-Lysine-based low-molecular-weight gelators. Chem. Soc. Rev. 38, 967–975 (2009).Article CAS Google Scholar Suzuki, M. & Hanabusa, K. Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem. Soc. Rev. 39, 455–463 (2010).Article CAS Google Scholar John, G., Shankar, B. V., Jadhav, S. R. & Vemula, P. K. Biorefinery: a design tool for molecular gelators. Langmuir 26, 17843–17851 (2010).Article CAS Google Scholar Svobodová, H., Noponen, V., Kolehmainen, E. & Sievänen, E. Recent advances in steroidal supramolecular gels. RSC Adv. 2, 4985–5007 (2012).Article Google Scholar Tam, A. Y.-Y. & Yam, V. W.-W. Recent advances in metallogels. Chem. Soc. Rev. 42, 1540–1567 (2013).Article CAS Google Scholar Raeburn, J., Cardoso, A. Z. & Adams, D. J. The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem. Soc. Rev. 42, 5143–5156 (2013).Article CAS Google Scholar Yu, G., Yan, X., Han, C. & Huang, F. Characterization of supramolecular gels. Chem. Soc. Rev. 42, 6697–6722 (2013).Article CAS Google Scholar Segarra-Maset, M. D., Nebot, V. J., Miravet, J. F. & Escuder, B. Control of molecular gelation by chemical stimuli. Chem. Soc. Rev. 42, 7086–7098 (2013).Article CAS Google Scholar Tachibana, T., Mori, T. & Hori, K. Chiral mesophases of 12-hydroxyoctadecanoic acid in jelly and in the solid state. I. a new type of lyotropic mesophase in jelly with organic solvents. Bull. Chem. Soc. Jpn 53, 1714–1719 (1980).Article CAS Google Scholar Yamamoto, S. Sorbitol derivatives. III. Organogel formation by benzylidenesorbitol. J. Chem. Soc. Jpn. Ind. Chem. Soc. 46, 779–781 (1943) Chem. Abstr. 46, 7047i (1952). Google Scholar Hanabusa, K., Hiratsuka, K. & Shirai, H. Easy preparation and useful character of organogel electrolytes based on

2025-03-26
User8057

Lithium intercalation into lix MO y host materials (M = Ni, Mn). J Electrochem Soc 147:1322–1331. Article Google Scholar Tavassol H, Chan MKY, Catarello MG et al (2013) Surface coverage and SEI induced electrochemical surface stress changes during li deposition in a model system for li-ion battery anodes. J Electrochem Soc 160:A888–A896. Article Google Scholar Wang JW, He Y, Fan F et al (2013) Two-phase electrochemical Lithiation in amorphous silicon. Nano Lett 13:709–715. Article Google Scholar Paz-Garcia JM, Taiwo OO, Tudisco E et al (2016) 4D analysis of the microstructural evolution of Si-based electrodes during lithiation: time-lapse X-ray imaging and digital volume correlation. J Power Sour 320:196–203. Article Google Scholar Nation L, Li J, James C et al (2017) In situ stress measurements during electrochemical cycling of lithium-rich cathodes. J Power Sour 364:383–391. Article Google Scholar Sheth J, Karan NK, Abraham DP et al (2016) In situ stress evolution in li 1+xMn 2O 4Thin films during electrochemical cycling in li-ion cells. J Electrochem Soc 163:A2524–A2530. Article Google Scholar Cho H-M, Chen MV, MacRae AC, Meng YS (2015) Effect of surface modification on Nano-structured LiNi0.5Mn1.5O4 spinel materials. ACS Appl Mater Interfaces 7:16231–16239. Article Google Scholar Ho C (1980) Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. J Electrochem Soc 127:343–350. Article Google Scholar Xie J, Kohno K, Matsumura T et al (2008) Li-ion diffusion kinetics in LiMn2O4 thin films prepared by pulsed laser deposition. Electrochim Acta 54:376–381. Article Google Scholar Goonetilleke PC, Zheng JP, Roy D (2009) Effects of surface-film formation on the electrochemical characteristics of LiMn2O4 cathodes of lithium ion batteries. J Electrochem Soc 156:A709–A719. Article Google Scholar Zheng J, Sulyma C, Goia C et al (2012) Electrochemical features of ball-milled lithium manganate spinel for rapid-charge cathodes of lithium ion batteries. J Solid

2025-03-28
User8657

Fritts, C. Brunini, Astrophys. J. 809(1), 36 (2015). Pokorný, P.G. Brown, Astron. Astrophys. 592, A150 (2016). ADS Google Scholar R.C. Blaauw, M.D. Campbell-Brown, R.J. Weryk, Mon. Not. R. Astron. Soc. 414(4), 3322 (2011). ADS Google Scholar E. Grun, H.A. Zook, H. Fechtig, R.H. Giese, Icarus 62(2), 244 (1985). ADS Google Scholar V. Porubčan, L. Kornoš, I.P. Williams, Contributions Astron. Obs. Skalnate Pleso 36, 103 (2006)ADS Google Scholar D.J. Asher, S.V.M. Clube, D.I. Steel, Mon. Not. R. Astron. Soc. 264, 93 (1993). ADS Google Scholar P. Spurný, J. Borovička, H. Mucke, J. Svoreň, Astron. Astrophys. 605, A68 (2017). ADS Google Scholar P. Jenniskens, J. Vaubaillon, Astron. J. 139, 1822 (2010). ADS Google Scholar T.J. Jopek, Z. Kaňuchová, Planet. Space Sci. 143, 3 (2017). ADS Google Scholar I.P. Williams, T.J. Jopek, R. Rudawska, J. Tóth, L. Kornoš, Minor Meteor Showers and the Sporadic Background (Cambridge University Press, Cambridge, 2019), p. 210 Google Scholar R.B. Southworth, G.S. Hawkins, Smithsonian Contributions Astrophy. 7, 261 (1963)ADS Google Scholar J.D. Drummond, Icarus 45(3), 545 (1981). ADS Google Scholar G.B. Valsecchi, T.J. Jopek, C. Froeschle, Mon. Not. R. Astron. Soc. 304(4), 743 (1999). ADS Google Scholar T.J. Jopek, R. Rudawska, P. Bartczak, Earth Moon Planets 102(1–4), 73 (2008). ADS Google Scholar A.V. Moorhead, Mon. Not. R. Astron. Soc. 455(4), 4329 (2016). ADS Google Scholar L. Neslušan, M. Hajduková, Astron. Astrophys. 598, A40 (2017). ADS Google Scholar R. Rudawska, P. Matlovič, J. Tóth, L. Kornoš, Planet. Space Sci. 118, 38 (2015). ADS Google Scholar P. Brown, R.J. Weryk, D.K. Wong, J. Jones, Icarus 195(1), 317 (2008). ADS Google Scholar J. Vaubaillon, F. Colas, L. Jorda, Astron. Astrophys. 439(2), 761 (2005). ADS Google Scholar G.O. Ryabova, Solar Syst. Res. 47(3), 219 (2013). ADS Google Scholar D.P. Galligan, W.J. Baggaley, Mon. Not. R. Astron. Soc. 359(2), 551 (2005). ADS Google Scholar A. Bischoff, J.A. Barrat, K. Bauer, C. Burkhardt, H. Busemann, S. Ebert, M. Gonsior, J. Hakenmüller, J. Haloda, D. Harries, Meteorit. Planet. Sci. 52(8), 1683 (2017). ADS Google Scholar J. Jones, P. Brown, Mon. Not. R. Astron. Soc. 265, 524 (1993). ADS Google Scholar D. Nesvorný, P. Jenniskens, H.F. Levison, W.F. Bottke, D. Vokrouhlický, M. Gounelle, Astrophys. J. 713(2), 816 (2010). ADS Google Scholar P. Pokorný, D. Vokrouhlický, D. Nesvorný, M. Campbell-Brown, P. Brown, Astrophys. J. 789(1), 25 (2014). ADS Google Scholar M.D. Campbell-Brown, Icarus 196(1), 144 (2008). ADS Google Scholar N. McBride, J.A.M. McDonnell, Planet. Space Sci. 47(8–9), 1005 (1999). ADS Google Scholar A.V. Moorhead, P.G. Brown, M.D. Campbell-Brown, D. Heynen, W.J. Cooke, Planet. Space Sci. 143, 209 (2017). ADS Google Scholar E. Grun, H.A. Zook, M. Baguhl, A. Balogh, S.J. Bame, H. Fechtig, R. Forsyth, M.S. Hanner, M. Horanyi, J. Kissel, Nature 362(6419), 428 (1993). ADS Google

2025-04-09
User4801

Formation histories of disc galaxies. Mon. Not. R. Astron. Soc. 2019, 483, 1496–1512. [Google Scholar] [CrossRef]McGaugh, S.S.; Bothun, G.D.; Schombert, J.M. Galaxy Selection and the Surface Brightness Distribution. Astron. J. 1995, 110, 573. [Google Scholar] [CrossRef]Akritas, M.G.; Bershady, M.A. Linear Regression for Astronomical Data with Measurement Errors and Intrinsic Scatter. Astrophys. J. 1996, 470, 706. [Google Scholar] [CrossRef] [Green Version]Begum, A.; Chengalur, J.N.; Karachentsev, I.D.; Sharina, M.E. Baryonic Tully-Fisher relation for extremely low mass Galaxies. Mon. Not. R. Astron. Soc. 2008, 386, 138–144. [Google Scholar] [CrossRef] [Green Version]McGaugh, S.S.; Schombert, J.M. Weighing Galaxy Disks with the Baryonic Tully-Fisher Relation. Astrophys. J. 2015, 802, 18. [Google Scholar] [CrossRef] [Green Version]Aaronson, M.; Huchra, J.; Mould, J. The infrared luminosity/H I velocity-width relation and its application to the distance scale. Astrophys. J. 1979, 229, 1–13. [Google Scholar] [CrossRef]McGaugh, S.S.; Wolf, J. Local Group Dwarf Spheroidals: Correlated Deviations from the Baryonic Tully-Fisher Relation. Astrophys. J. 2010, 722, 248–261. [Google Scholar] [CrossRef]Mo, H.J.; Mao, S.; White, S.D.M. The formation of galactic discs. Mon. Not. R. Astron. Soc. 1998, 295, 319–336. [Google Scholar] [CrossRef] [Green Version]Bullock, J.S.; Kolatt, T.S.; Sigad, Y.; Somerville, R.S.; Kravtsov, A.V.; Klypin, A.A.; Primack, J.R.; Dekel, A. Profiles of dark haloes: Evolution, scatter and environment. Mon. Not. R. Astron. Soc. 2001, 321, 559–575. [Google Scholar] [CrossRef] [Green Version]Gnedin, O.Y.; Weinberg, D.H.; Pizagno, J.; Prada, F.; Rix, H. Dark Matter Halos of Disk Galaxies: Constraints from the Tully-Fisher Relation. Astrophys. J. 2007, 671, 1115–1134. [Google Scholar] [CrossRef] [Green Version]Trujillo-Gomez, S.; Klypin, A.; Primack,

2025-03-29
User2233

Dark Matter Distribution. Astrophys. J. 2004, 609, 652–666. [Google Scholar] [CrossRef] [Green Version]Bekenstein, J.D. Non-Newtonian gravitation and causality. In Developments in General Relativity, Astrophysics and Quantum Theory; Institute of Physics Publishing: Bristol, UK, 1990; pp. 155–174. [Google Scholar]McGaugh, S. The Third Law of Galactic Rotation. Galaxies 2014, 2, 601–622. [Google Scholar] [CrossRef] [Green Version]de Blok, W.J.G.; McGaugh, S.S. The dark and visible matter content of low surface brightness disc galaxies. Mon. Not. R. Astron. Soc. 1997, 290, 533–552. [Google Scholar] [CrossRef] [Green Version]de Blok, W.J.G.; McGaugh, S.S. Testing Modified Newtonian Dynamics with Low Surface Brightness Galaxies: Rotation Curve FITS. Astrophys. J. 1998, 508, 132–140. [Google Scholar] [CrossRef] [Green Version]Fall, S.M.; Efstathiou, G. Formation and rotation of disc galaxies with haloes. Mon. Not. R. Astron. Soc. 1980, 193, 189–206. [Google Scholar] [CrossRef] [Green Version]Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal Density Profile from Hierarchical Clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]Scannapieco, C.; Wadepuhl, M.; Parry, O.H.; Navarro, J.F.; Jenkins, A.; Springel, V.; Teyssier, R.; Carlson, E.; Couchman, H.M.P.; Crain, R.A.; et al. The Aquila comparison project: The effects of feedback and numerical methods on simulations of galaxy formation. Mon. Not. R. Astron. Soc. 2012, 423, 1726–1749. [Google Scholar] [CrossRef] [Green Version]Milgrom, M. Quasi-linear formulation of MOND. Mon. Not. R. Astron. Soc. 2010, 403, 886–895. [Google Scholar] [CrossRef] [Green Version]Milgrom, M.; Sanders, R.H. Rings and Shells of “Dark Matter” as MOND Artifacts. Astrophys. J. 2008, 678, 131–143. [Google Scholar] [CrossRef] [Green Version]McGaugh, S.S. Milky Way Mass Models and MOND.

2025-04-12

Add Comment